快速发布求购| | | | | 加微群|
关注我们
本站客户服务

线上客服更便捷

仪表网官微

扫一扫关注我们

|
客户端
仪表APP

安卓版

仪表手机版

手机访问更快捷

仪表小程序

更多流量 更易传播


您现在的位置:仪表网>光谱仪>资讯列表>科学岛团队发展一种近红外光谱新算法鉴定作物品种真实性

科学岛团队发展一种近红外光谱新算法鉴定作物品种真实性

2022年06月29日 15:44:05 人气: 17502 来源: 合肥物质科学研究院
  【仪表网 仪表研发】近日,中科院合肥研究院智能所作物品质智能感知团队发展了一种近红外光谱技术方向的新算法,该算法适用于高通量鉴定作物品种的真实性。相关工作被Infrared Physics & Technology接收并在线发表。
 
  作物品种真实性在品种保护及品种选育方面具有重要意义,传统的作物品种真实性鉴定方法如DNA分子鉴定、同工酶鉴定、田间鉴定等方法存在操作复杂、检测结果耗时、损伤样品、污染环境、结果滞后等缺点,亟需一种快速有效的方法实现作物品种真实性鉴定。近红外光谱是一种快速无损检测技术,基于近红外光谱仪开发的光谱采集系统,可实现高通量采集作物单籽粒光谱。近年来,由于人工智能和深度学习的快速发展,卷积神经网络(CNN)已逐渐应用于分子光谱学,相比于传统的化学计量学算法,CNN在识别方面表现出更高的准确性和鲁棒性,这为近红外光谱技术的应用和发展提供有力支撑。
 
  为此,研究人员提出了一种改进的CNN:InResSpectra网络,用于小麦和水稻品种真实性的高通量鉴定。该网络对Inception网络进行改进,删除1×1卷积分支降低模型复杂度,同时增加ResNet网络的残差元素,加速了神经网络的训练,同时提升模型的准确率;同时,实验中对比研究了多种分类算法,不断优化模型参数,提高模型预测的稳健性。在此次研究中,研究人员将开发的系统应用于鉴定24个小麦品种和21个水稻品种上,分别取得95.35%和93.07%的准确率(图1),为近红外鉴定作物品种真实性提供了有效方法。
 
  李晓红硕士和徐琢频博士为该论文第一作者,王琦副研究员和张鹏飞副研究员为通讯作者。该工作得到国家自然科学基金、安徽省科技重大专项、以及安徽省重点研究与开发计划等项目的支持。
 
InResSpectra网络识别小麦和水稻样本集的混淆矩阵热力图
关键词: 近红外光谱仪
全年征稿/资讯合作 联系邮箱:ybzhan@vip.qq.com
版权与免责声明
1、凡本网注明"来源:仪表网"的所有作品,版权均属于仪表网,未经本网授权不得转载、摘编或利用其它方式使用上述作品。已经本网授权使用作品的,应在授权范围内使用,并注明"来源:仪表网"。违反上述声明者,本网将追究其相关法律责任。
2、本网转载并注明自其它来源的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品来源,并自负版权等法律责任。
3、如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。
4、合作、投稿、转载授权等相关事宜,请联系本网。

企业推荐

更多
联系我们

客服热线: 0571-87759942

加盟热线: 0571-87756399

媒体合作: 0571-87759945

投诉热线: 0571-87759942

关注我们
  • 下载仪表站APP

  • Ybzhan手机版

  • Ybzhan公众号

  • Ybzhan小程序